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ABSTRACT

In pulsed Doppler velocimetry, one of the main constraints is the opposite relation binding the exploration depth
and the maximum measurable velocity (Nyquist velocity). Thus for a value higher than the Nyquist limit, the
Doppler spectrum is aliased (Shannon Theorem) and the estimated velocity is false. In some applications, this limit
is penalizing. Especially, the ultrasonic velocity profiles measurement in sewerage is compromised.

A method allowing velocity measurements beyond the Nyquist limit is proposed. It is based on a technique from
weather radars using multiple pulse repetition frequency (PRF). Each folding up, which is different for each PRF,
adds information in order to resolve the velocity ambiguity. The proposed algorithm recombines the aliased spectra
obtained for each PRF in order to reproduce the original Doppler spectrum. Velocity can thus be calculated on a
spectrum not splited by folding up.

With this new method, the limit is not given any more for the maximum frequency in the Doppler spectrum but
for the maximum width of this spectrum. Indeed, the only constraint is that the periodisation of the spectrum, which
is related to the sampling, does not cause any overlapping of the copies of the original spectrum.

Keywords:  range-velocity ambiguity, pulsed ultrasonic Doppler velocimetry, multiple pulse repetition
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INTRODUCTION

With the use of ultrasonic Doppler Method for velocity
measurements, the pulse repetition frequency (PRF) gives both
the exploration depth and the sample rate of the Doppler wave.
This results in a bond between the maximum detectable
velocity and the exploration depth, also known as
range-velocity ambiguity.

The maximum velocity, noted Nyquist velocity Viy s is
given, for the situation given figure 1, by equation:

_ ¢’ tan 8
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with:
h : water height
p : angle between flow and transducer axis
¢ : acoustic velocity
/5 : ultrasound frequency. /\

Fig. 1 Principle of flow scan. The transducer sends an
ultrasonic burst into the pipe (height %) with an angle S
compared to the flow direction (represented by velocity

vector vy, ).

— 115 —



The fixed goal is the development of a fluxmeter able to
deliver velocity information up to 3 m/s in a Im depth pipe.
These limits include a majority of situations for most pipes
present in sewer networks.

In these hydraulic flows, the particles with a higher radius
than 750pum move by saltation, and thus be inappropriate
ultrasound tracers.

Moreover, reflection on a particle target implies that
ultrasound wavelengths are small compared to the particle size
[2]. Thus, an emission frequency of 1MHz is an adequate
solution. According to equation (1), and with a angle of f=75°,
the Nyquist limit is about 1 m/s, value three times smaller than
the desired value.

In order to solve the range-velocity ambiguity, the use of
different repetition frequencies has been proposed in the
Doppler weather radar domain [3, 4].

This technique, also named staggered PRT, MPDA (Multi
PRF Dealiasing Algorithm) or Dual PRF is used in addition to
pulse-pair algorithms. It is based on the calculation of the
mean velocity for every PRF, than combine these velocities in
order to retrieve the true velocity in the considered spatial
volume.

Spectrum mean frequency estimated by the pulse-pair
method is given, for one given PRF, in the [-PRF/4; PRF/4]
interval. Thus, a disadvantage of this method is the biasing of
the velocity estimation to a value of PRF/2 for frequencies near

on the values | k + l ﬂ

2) 2
observe this bias increases for large spectrums and small signal
to noise ratios.

(k integer). The probability to

This paper focuses on velocity estimation by spectral
analysis. The true Doppler spectrum is extrapolated from a
batch of folded up spectrums obtained by undersampling the
Doppler signal at different PRF. First results obtained with
simulation are discussed.

PRINCIPLE
Signal characteristics

The Doppler signal resulting from the echo demodulation in
phase and quadrature from particles present in the fluid is
noted s(t). It is a complex signal with random phase, available
only in its sampled form s*(t) at the sampling frequency:

1 o

o g

e

G(w) is the power spectral density (PSD) of the continuous

signal s(t). The PSD of the sampled signal (Figure 2) can be
written as:

G*(m):% Y Gw-ka,) (3)
e k=—o

This density has a limited bandwidth A , centered on the
Doppler pulsation @,,,;, proportional to the fluid velocity
according to the Doppler effect [9]:
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Moreover, the velocity of the fluid is considered to be
contained in a specific range, corresponding to a spectral band
of 2w,, . We consider:

G(w)=0 Voelo,:o,] )

General description of the method

Within the traditional framework of the Shannon theorem,

the sampling frequency is choose such as :

w,>20, (6)
Thus, in figure 2, the middle graph present the PSD of the
signal sampled at a frequency f, respecting this theorem. The
PSD of the continuous signal (in the upper graph) can be
obtained when considering the interval ]— @Oy Our| -

On the other hand, when using smaller sampling rates, the
signal is undersampled and its spectrum is aliased. When
considering the interval ]—a)M;a)M[ (interval |-1;+1[in the
lower graph, figure 2), there is an ambiguity on which
spectrum is the truth.
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Fig. 2 Effect of folding up according to various sampling
rates. The frequency is normalized by f, , the undersampling

factors are 2 and 3.

Undersampling induces a loss of information. Nevertheless,
in the case of a signal with limited bandwidth, this loss can be
compensated by the use of several spectral densities of the
same signal resulting from a sampling at different frequencies.
M (w) is a combination of the spectral densities of the

undersampled signal at various frequencies. An expression of
M (@) is searched, as well as a criterion on M (@) indicating

the spectral origin of the energy.

As shown in equation (3), the PSD of the sampled signal can
be described as the sum between the spectrum of the
continuous signal and infinity of images of this spectrum
shifted in frequency (copies). This spectral shift depends only
on the sampling frequency. Thus for several different sample
frequencies, only the copies will have been moved, whereas
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the part of the spectrum corresponding to the continuous signal
is always at the same position. When considering the
multiplication of the spectra, it is clear that the resulting
spectral function has its maximum value where the maxima of
the different PSD coincide. This coincidence is systematic at
the position of the original spectrum. Elsewhere, the spectrum
coincidence will depend on the position(s) of the maximum(s)
in the original spectrum and on the sampling rates used.

We consider two sampling rates as well as their associated
PSD of the undersampled signal:

(0]} *
Jo = 261 > G, (0)

a:z * (7)
er = Zj; s G2 (a))

M (w) is the product of these densities:
M(@) =G * (@) G, *(w)

1 400 +00 (8)
=5 Z ZG(w_kla)el)'G(w_kaez)
TelTeZ kl=—c0 k2=—0

The conditions on the sampling rates have to be determined
so that only the parts corresponding to the original power
density in the densities obtained by undersampling have their
maxima which coincide. So, the maximum of energy takes
place at the noted pulsation @, defined by:

O p o = arg Max(M ()) = arg max(G()) ©)
[0 [0
with argmax the function that gives the spectral position of
[}
the maximum of power.

By identifying the maximum of the multiplication of the
densities from the signal, sampled at various frequencies, and
by considering the conditions carried out, one has an indication
on the spectral localization of the maximum of energy in the
continuous signal.

The subtraction of a portion of energy (represented by a
Dirac impulse ¢ ) at this frequency is considered. This implies
that the maximum is moved. By recomputing the product and
by locating the position of the new maximum, one can locate
the presence of energy at another frequency than that of the
initial maximum. It is then possible to apply this property in a
recursive way in order to rebuild the original power spectral
density.

Because this treatment is numerical, the subtraction cannot
be applied directly to the spectrum of the continuous signal; on
the other hand this one can result in the subtraction of a Dirac

+0
comb, defined by sha,, = 25(60 —kw,) , to the spectrum of

k=—
the sampled signal. Thus, the operation of subtraction:
G(@) = 66(0 = O may ) (10)
results in:
1 &
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The rebuilding of the power spectral density of the
continuous signal is carried out by starting with a null density,

then by accumulating at each stage of the recurrence a portion
of the energy identified at the frequency of the detected
maximum. Conversely, the densities of the undersampled
signal are gradually cut down by the algorithm. The iteration is
stopped when the remaining energy in these densities is close
to zero.

Sampling frequency determination
The depth of exploration is the first constraint on the choice

of the sampling rates. This constraint acts through the time of
flight of the wave. Thus, whatever the @,y , it is necessary to

respect:
cT, efi) h (12)
2 sin f#

The condition imposed by the algorithm is deduced from the
equations (8) and (9) by introducing the conditions (4) and (5)
and by stipulating that the copies should not be superimposed:
ey, — ky,,| > Aw (13)
|kla)gl| <y

for all k,and k, integers such as :
|k2wez| <y,

An undersampling factor kg, (real number) is defined for
each sampling frequency, such as:
20y = kel @) (14)
This factor link the sampling frequency that would be
necessary to respect the Shannon theorem ( 2w,, ) and the
effective sampling frequency ( @,y ), respecting the depth
constraint described by equation (12).

As the spectrum width Aw is a priori unknown, the
distance between the various components (copies) of the
folded up spectra have to be maximized. By imposing £, such
is

as the constraint of depth is respected, kg, >k,

determined such as (by introducing equation (14) in condition

(13)):
argmax| min K (15)
2| <k
for all k,and k, integers such as : [24] < Ko
|2k2| < kse2
Thus, taking an undersampling factor k,,, =2, induces
DOm

kg, =3 and the limiting spectrum width Aw =

Spectral density computing

In practice, the spectra are computed with the numerical
algorithm of Fast Fourier Transform (FFT). Since algebraic
operations have to be carried out between spectra obtained
from different sampling frequencies (fe{[}), it is necessary to

choose for each sampling rate the suitable sample numbers
N,y in order to obtain, in each case, the same spectral

resolution &f, . This implies:

S, ==t (16)
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The standard algorithm of the Fast Fourier Transform
(FFT), initially proposed by Cooley and Tuckey, requires a
sample number which is a power of two. This induce that the
sampling rates are multiples, and the undersampling factors
too, which is in disagreement with the condition (15). Within
this framework, the sample numbers imposed by the standard
Fast Fourier Transform do not satisfy the conditions. It is thus
necessary to use an improved version of the FFT algorithm
called mixed radix Fast Fourier Transform, making it possible
to work with an unspecified number of samples.

In addition, the FFT computation gives the values of the
Fourier transform of the sampled signal on the interval

i

[0; D, }[. Because the interval of interest is ]—a)M;a)M[, the

result of the FFT has to be duplicate on it, in order to obtain, for
each undersampled spectrum, the same block dimension.

Reconstruction algorithm description

As the algorithm is recurrent, an index of iteration / is
defined. The computing starts with several versions of the
sampled signal at different frequencies @,y; . For each version,

the power spectral density G{*I-J:O}(a)) is calculated, by Fast
Fourier Transform, followed by the duplication on the interval
]_ Oy 5Oy [ :

The next step consists in the multiplication between the
several duplicated power spectral densities and in searching
the position of the maximum @, ¢} in the product. A tiny

part € (a few ten percent) of the identified energy is added to
the power spectrum é{l}(w) , which has a null initial density
and will become the reconstructed PSD:

Gy ) (@) = (@) + 85(0 — ) (17)

The duplication, due to the sampling, is then applied to this
part of energy, which results in a Dirac comb (see equation
(11)). The subtraction of this comb to the PSD obtained at the
same sampling rate is then computed:

* * &
G (@) = Gy (@) _TTShawe{i: (a) ~®p max{l}) (18)
e{i}
This sequence, described by figure (3), is repeated until
obtaining folded up spectra of energy lower than a threshold.
One will take, for example, the electronic noise level of which
the density, for a given system, is known.

Thus, as the folded up spectra are cut down by the
algorithm, the spectrum of the Doppler signal is gradually
rebuilt.

stop

.
—

Rebuilded DSP Gy

Fig. 3 Synoptic of the reconstruction algorithm. The thick
lines represent the parallel processing on each spectral density
of index {i}.

Simulation

In order to validate the functionality of the method, a
Doppler signal is simulated on a computer. Various
undersampling frequencies are used in order to apply the
algorithm and rebuild the power spectral density of the
generated signal.

The parameters needed for the signal generation are the
central frequency of the spectrum, the bandwidth as well as the
signal to noise ratio. The power spectral density is considered
to be a Gaussian function of standard deviation taken equal to
Aw/6.

The temporal signal is generated starting from the sum of
many particle echoes. Each echo consist in a random phase
sinusoid with the desired frequency, multiplied by a Gaussian
function of standard deviation equal to the inverse of that of the
spectrum. Once the individual echoes are summed, the whole
energy is calculated in order to define the density of noise
according to the desired signal to noise ratio. This noise is then
added to the whole particle echoes.

The signal thus generated is used to calculate the reference
spectrum (or original spectrum). This same signal is
undersampled with various factors k. by taking, in the

temporal signal, a sample each k) in order to obtain the

various undersampled signals. The reconstruction algorithm,
presented in the preceding section, is then applied to the batch
of undersampled signals.

RESULTS AND DISCUSSION
The spectral reconstruction algorithm allows the proper

restitution of the original PSD. Figures (4) to (6) presents
several examples of spectral rebuilding in different noise and
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signal bandwidth situations. Velocity is identical for all curves
because the reconstruction only depends on the spectrum’s
shape, and not on the velocity value.
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Fig. 4 Comparison between the reconstructed PSD and the
one obtained with respect to Shannon theorem for a narrow
simulated input spectrum with a signal to noise ration of 100.
Frequency is normalized with respect to f;, , and
undersampling factors are 2 and 3.
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Fig. 5 Comparison between the reconstructed PSD and the
one obtained with respect to Shannon theorem for a narrow
simulated input spectrum with a signal to noise ratio of 1.
Frequency is normalized with respect to f;, , and
undersampling factors are 2 and 3.

20

ornginal
18 rebuild ——

16
14
12
10

8
6
4
2
0

-1 -0.5 0 05 1

power

normalized frequency

Fig. 6 Comparison between the reconstructed PSD and the
PSD obtained with respect to Shannon theorem for a broad
simulated input spectrum (condition (11) not respected) with a
signal to noise ration of 1. Frequency is normalized with
respect to f},, and undersampling factors are 2 and 3.

Quality level of reconstructed spectrum depends strongly on
signal to noise ratio and on spectrum broadness.

In the case of combination of two spectrum dropped down
afterwards to 420 samples, the computing duration (pentium IV
platform at 2.4 GHz with 512 Mo of RAM) is near on 20ms.

This time equals 0.8ms when 48 samples are needed.
According to these values, real time processing is possible.

Theory has demonstrated that the boundary factor of this
method is the spectrum broadness. Thereby, figure (4) to (6)
shows that the quality of the reconstructed PSD depends
strongly on signal to noise ratio and on spectrum fitness.
Indeed, without respect to this criterion, parts of the spectrum
images grow up in different frequency bands where normally
no energy exists (presence of parasitic peaks). This
phenomenon is generated during spectral products, and come
first from white noise, and second from the overlapping of the
spectrum copies, issued from the different undersamplings.
Additional sampling frequencies can increase the quality of the
reconstructed spectrum.

Another way to extract the original PSD is to use the
position of the rebuild density as indicator of the position of the
original density, and use it for extracting the original PSD from
the folded one.

This can be done in observing a window of width @, ,

centered on this position indicator, in the density obtained from
the signal undersampled with the factor k.

Indeed, although the rebuilt spectrum is denatured beyond
the limit given by the condition (13), its position @, is
available until the surrounding of:

Ao <o, (19)
with:
®,; : highest sampling frequency used.

Moreover, the position of the reconstructed Spectral density
is much more consistent than the maximum of the product of
the PSD obtained by undersampling. Indeed, unlike the
maximum, it is based on the whole spectral information.

Thus, in the case of undersampling factors of 2 and 3, this
method would make it possible to pass from a limiting
spectrum width of @,, /3 to o, .

CONCLUDING REMARKS

In order to measure velocities beyond the Nyquist limit, a
technique based on the use of multiple PRF was proposed. It
uses an original algorithm of spectral reconstruction by
combination of the information obtained for each sampling
rate. Simulations show the applicability of this method in a
large variety of situations. However one notes the appearance
of a new limit connecting the width of the Doppler spectrum
(instead of the maximum frequency) with the exploration
depth.
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