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The sustainable use of reservoirs for irrigation, flood protection, water supply, and hydropower may be 
endangered due to unavoidable reservoir sedimentation. In many reservoirs turbidity currents are the 
main process for the transport and deposit of sediments. Besides other measures, turbidity currents 
can be influenced by means of solid obstacles, permeable geotextile screens or the injection of water 
jets. Physical experiments and numerical simulations of turbidity currents flowing over an obstacle, 
against a textile screen or through a water jet screen were carried out. In each experiment vertical 
velocity profiles in the body of the turbidity current were measured with an ultrasonic velocity profiler 
(UVP). The velocity measurements were made at three locations upstream of the various obstructions 
and one location downstream. The investigations showed that turbidity currents could be influenced 
effectively by properly designed constructive measures. Based on the results of the physical 
experiments and numerical simulations, some design recommendations for solid and permeable 
obstacles as well as for a jet screen are proposed. 
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1 INTRODUCTION 
The aim behind the efforts to create reservoirs is 
storing water, however solid material is carried 
along by the water and is, as a rule deposited there. 
Long-lasting operation of reservoirs in terms of 
sustainable use of available water resources 
involves the need for sedimentation control and 
release. 
Wise development of hydropower resources 
regarding sedimentation has frequently not been 
implemented in the past and the sustainable use of 
reservoirs is not always guaranteed in the long term. 
In narrow reservoirs with quite steep bottom slopes, 
turbidity currents are frequently the main process for 
the transport and deposit of sediments [1] (Fan and 
Morris 1992). These turbidity currents with high 
sediment concentrations mainly occur during floods 
and follow the thalweg to the deepest zones of the 
reservoir near the dam. Depending on the slope of 
the thalweg, density currents reach velocities in the 
range of 0.5–0.8 m/s, and exceptionally up to 2 m/s 
during floods [2] (Fan 1986). Sediments, which have 
already settled down, can therefore be eroded again 
and transported toward the dam. The resulting 
introduction of additional suspended sediments into 
a turbidity current increases its density and 
consequently its velocity [3] (Parker et al. 1986). On 
the other hand, turbidity currents slow down on low 
slopes or after a hydraulic jump, which causes the 
sediments to settle and the current to die out [4] 
(Altinakar et al. 1990). 

If turbidity currents can be entirely stopped in a 
reservoir, or influenced in such a way that the 
sediments are not deposited in critical locations like 
in front of intakes and bottom outlets, the 
sustainability of the reservoir operation may be 
increased considerably. Such technical measures to 
control reservoir sedimentation due to turbidity 
currents have in principal the purpose to stop, dilute, 
or divert the flow influencing the location of major 
sediment deposits. This can be done by a solid or 
permeable obstacle [5] (Oehy and Schleiss 2007) or 
a jet screen placed inside the reservoir (Figure 1).
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Reservoir in Switzerland. The model used in this 
study is based on the CFX-4 flow solver, where user 
routines were added to take into account the settling 
of the suspended sediments and the erosion-
deposition at the bottom. The effects of solid 
obstacles or permeable screens on turbidity currents 
have been investigated in the case study of Lake 
Grimsel [11] (Oehy and Schleiss 2001) and Lake 
Lugano [12] (De Cesare et al. 2006). [13] Bühler et 
al. (2006) give an excellent overview on the 
phenomena of flows on inclines passing through 
water jets directed upstream. 

3 EXPERIMENTS 
3.1 Experimental set-up 
The experiments were carried out in an 8.55 m long, 
0.27 m wide and 0.90 m deep multipurpose flume 
(Figure 2 left). The flume can be tilted in a slope range 
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between 0 and 5%. I
stilling box and head tank we
allowed the release of th
downstream part simulating a 7.1 m long straight 
reservoir. An adjacent mixing tank with a capacity of 
1.5 m3 was used to prepare the dense fluid mixture. 

   
Figure 2: Photograph of the experimental flume (left) and 
the UVP transducer as well as the bottom and reference 
electrodes (right). 
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Figure 3: Sequ wing over a 
Gaussian obst ach 
front flow velocity Uf m/s, height of the cu
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w  
tranquilizer composed of small rectangular tubes 
reduced the scale of the initial turbulence of the
released mixture and generated a uniform velocit

of the flume trapped the turbidity current for 
withdrawal. For the experiments a cohesionless, fine 
polymer powder with a density of ρs = 1'135 kg/m3 
and a particle diameter of d50 = 90 μm was chosen. 
More details on the experimental set-up can be 
found in [14] (Oehy 2002). 
3.2 Modeling of obstacles (solid and permeable) 
and of an inclined jet screen 
The solid obstacle used in this study was a ridge of 

24 cm height, extending across the full width of the 
flume at a distance of x = 5
Gaussian shape. This particular form is used
because it does not have any edges creating flow
singularities, and can simulate an embankment 
dam. Furthermore, [15] Prinos (1999) investigated 
two-dimensional density currents over semicircular 
and triangular obstacles and found that there is no 
significant effect of the obstacle geometry. 
Furthermore, five turbidity current runs through a 
permeable screen made of two different types of 
Tricopor® geotextiles of 0.5 m height, also located at 
x = 5 m from the inlet, were carried out. The 
respective porosities were 36% and 41%. 
In order to investigate the turbidity current flow 
across an inclined multiport-diffuser, water jets 
emerged from a rectangular box 60 cm long, 
27.2 cm wide and 7 mm thick placed inside the 
flume on the channel bottom. The jet screen was 
located x = 5.15 m from the inlet gate. 
3.3 Measuring devices 
In each experiment four vertical velocity profiles in 
the quasi-steady body of the turbidity current were 
measured with an ultrasonic velocity profiler (UVP, 
Figure 2 right). This method w
successfully in the earlie
monitoring of laboratory turbidity currents, as well as 
in a laboratory reservoir sedimentation study by [16] 
(Kantoush et al. 2008). A device to measure the 
local evolution of sediment layer thickness during 
the experiments was developed based on the fact 
that the electrical resistance of a layer of particles 
depends on its thickness [17] (De Rooij et al. 1999). 
The thickness of the sediment deposits can thus be 
determined by measuring its resistance. The 
resistance was measured between a 6 mm 
stainless-steel rod, 6.5 m long, mounted 0.5 m 
above the flume bottom and 62 electrodes on the 
bottom (Figure 2 right). 

4 RESULTS 
4.1 Flow over a solid obstacle 
When the turbidity current reached the obstacle, it 
climbed up, deceleratin
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4.3 Flow thr jet screen 
Figure 5 shows a photographic progression of the 
turbidity current flowing through the jet screen. 
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in the quasi-steady part of the turbidity current body. 
The computed velocity profiles are compared with 
the experimental results as shown in Figure 6 for the 
passage over a solid obstacle and through a 
permeable screen.
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When the turbidity current reached the vertical scree
it was nearly blocked due to the increased f
resistance (Figure 4). The turbidity current th
climbed up the screen to a heig
height of the oncoming turbidity current, and 
decelerated as it rose. The turbidity current then 
started to seep through at the bottom of the screen 
driven by the pressure gradient. As the interface 
upstream rises, more fluid passes through the screen, 
forming a small and slow outgoing turbidity current. 
Due to the flow resistance of the screen, part of the 
flow is reflected and moves upstream as an internal 
bore similar to the experiments with a solid obstacle. 

  

 
Figure 4: Sequence of a turbidity current flowing through a 
permeable screen (41% porosity) at time intervals of 10 s. 
Approach front flow velocity Uf = 0.051 m/s, height of the 
current h = 0.112 m. 
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The sequence starts just before the turbidity current 
reaches the inclined jet screen. A small amount o
the turbidity current
part of it remains upstream and is push
4.4 Velocity profiles of the turbidity currents 
Computed profiles of streamwise velocity 
compared with the values determined from 
measurements by UVP using time-averaged profiles 

 

a) b)

 

 
Figure 6: Vertical velocity profiles upstream and down-
stream of the obstacle nd b) and of the permeabl
screen c) and d). Computed velocity, u (thin solid line); 
measured velocity (plus signs); and computed 
concentration, cs (dashed line). 

In addition, the computed concentration distribution 
using CFX-4 is shown on the same graphs. It can be 
seen that the numerical results agree fairly well with 
the measured distribution of the streamwise velocity. 
The height at which the concentration vanishes 
coincides approximately with the height of zero
velocity. Due to the effect of the obstacle nd 
screen, the downstream velocity as well as  
concentration is strongly reduced, whereas the 
height is increased. 
4.5 Influence on sediment deposition 
The measured evolution of the sediment deposits 
along the flume is shown in Figure 7 and has been 
compared to the results from the numerical model. 
Both approaches showed that sedimentation 
downstream of the diffuser is significantly reduced
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while the upstream deposition is increased due
the flow and sediment retention. 

 to 

 
Figure 7: Measured evolution of sediment deposit of the 
turbidity current partially blocked by the 45° upward 
inclined water jet screen at time intervals of 10 s. 

5 CONCLUSIONS 
The long term use of reservoirs for irrigation, flood 
protection, water supply and hydropower may be 
endangered due to unavoidable reservoir 
sedimentation. The challenge for designers and 
dam operators is to achieve sustainable storage 
volumes by means of wise reservoir sedimentation 
management. Very often turbidity currents are the 
governing process for the transport and deposition 
of suspended sediments in reservoirs. Physical 
experiments and numerical simulations of turbidity 
currents flowing over a solid obstacle and through a 
geotextile screen as well as through an inclined 
water jet screen were carried out.  
Based on the tests and simulations it can be 
concluded that solid obstacles with reasonable 
heights (at least twice the high of the approachin
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turbidity current) allow for efficient blocking of
turbidity currents. The laboratory tests as well a
numerical case studies revealed this signi
effect of obstacles. The investigations show
that, in certain config
be considerably slowed down by a geotextile or an 
inclined water jet screen and therefore most of the 
sediments can be retained upstream. 
The technical measures presented may also be of 
interest in combination with other traditional 
methods, such as flushing or turbidity current 
venting, but also with new concepts of sediment 
management in reservoirs. 
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