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A horizontal magnetic field (HMF) may improve conditions in the melt during large silicon single crystal growth
by the Czochralski technique. This observation is counter-intuitive as the HMF evidently breaks the rotational
symmetry. A previous study has shown that the HMF is not able to significantly delay the Rayleigh-Bénard
instability in a rotating cylinder. It has been observed that an oscillating flow sets in soon after the linear onset.
Can we expect a stabilizing effect of the HMF in the Czochralski growth? Why the symmetry breaking by the
HMF is eventually not so relevant? These are two central questions for our primarily experimental study. Besides,
it is also meant as a benchmark for comparison with the numerical codes. To serve the latter purpose the
boundary conditions should be preferably well defined. Having this in mind the temperature boundary conditions
are defined as follows. An isothermal heating is applied at the bottom of a cylindrical cell filled with GalnSn
alloy. The side wall is thermally insulated. An optionally rotating isothermal cooler models the growing crystal.
A water-cooled layer of an alkaline solution keeps the rest of the metal surface free from oxides and models the
radiation heat loss. The maximum HMF strength is 0.3 T that corresponds to a Hartmann number of about 1200.
Velocity profiles are measured by ultrasound Doppler velocimetry.
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1. Introduction

HMF has emerged as one of the most promising magnetic
field configurations in the single crystal silicon growth by
the Czochralski (CZ) technique. Various numerical
simulations of the process [1, 2] have shown that HMF
strongly stabilizes the melt under characteristic growth
conditions. This observation contrasts with the linear
instability results [3] in a cylindrical Rayleigh-Bénard
(RB) cell predicting onset far below the typical CZ
conditions. The linear instability is monotonic that means
another steady solution sets in. Such instability by itself is
practically harmless in the sense that it brings no
instationarity. However, it is known from experiments in
a rectangular RB cell [4] that the first linear onset is soon
followed by secondary instability which leads to
oscillating flow. One of the main tasks of our study is to
address this apparent contradiction in a physical model of
the CZ process with HMF.

The RB cell is a rough model of CZ focused on the basic
instability driving mechanism by unstable stratification of
the melt. One of the key differences between RB and CZ
configurations is the intrinsic radial temperature gradient
in the latter. This gradient drives a flow in the CZ melt
for an arbitrary small temperature gradient. This flow
should be proportional to the driving buoyancy force
(temperature gradient) when it is small enough. In the
RB, in turn, the flow is zero unless the linear instability
creates it at a sufficiently high temperature gradient. One
may expect that instead of instability the CZ melt will
develop a flow regime with a faster-than-linear
dependency of velocity vs the temperature gradient. This
“ghost” of the linear instability is another target of our
study.

Instationarity may be produced in the CZ process also by
a completely stable three-dimensional flow. A stationary

but non-uniform azimuthal distribution of velocity and
temperature in the melt produces oscillating conditions
on the surface of a rotating crystal. The HMF evidently
breaks the rotational symmetry. It is, therefore, puzzling
how it may produce satisfactory growth conditions. In the
current study we consider only a stationary crystal that
can hardly solve this puzzle. The measurements are more
intended to quantify the maximum initial degree of the
azimuthal non-uniformity of the flow in the bulk of melt.
These results should serve as an input for the design of
further model experiments with HMF and the crystal
rotation.

2. Basic principles in modelling the
Czochralski technique

The simplest model of the CZ facility might be a RB
configuration, in particular a cylindrical cell heated from
below and cooled at the top which is characterized by a
height H and diameter 2R and adiabatic insulated side
walls. Applying a temperature gradient AT = T, — T,
between the bottom and top sides, buoyant convection
occurs when AT exceeds some critical value.

The dynamics of the mere thermally induced convection
may be described by three control parameters. First of all
the dimensionless Rayleigh number Ra is the crucial
parameter in modelling buoyancy and describes its
strength: Ra = SgATH’/vy, where B is the thermal
expansion coefficient , v the kinematic viscosity, y the
thermal diffusivity of the fluid, and g the gravitational
acceleration. The second control parameter, the Prandtl
number Pr, takes into account the heat transport within
the fluid and is given by the ratio of the thickness of
viscous and thermal boundary layers: Pr = v/. In
general, molten metals and semiconductor melts are low
Prandtl number fluids with Pr in the order of 1072, which



means that the heat diffuses quickly in comparison with
the convective transport.

The third control parameter, the aspect ratio a = H/(2R)
concerns the geometry of the setup and affects crucially
the developed convective pattern inside the melt. More
details, in particular about varying aspect ratios, can be
found in [5, 6] and references therein. The initial filling
level in a real industrial CZ facility does not reach a = 1,
it is even lower than a = 0.5 and decreases continuously
during the process.

The Hartmann number Ha=BL(o7/pVv)"* occurs as another
control parameter if external magnetic fields are exposed
to the system. Thereby B is the magnetic induction, L a
typical length scale in the system, and o the electrical
conductivity of the melt. The Hartmann number
represents a measure for the ratio between the
electromagnetic body force and the viscous force.
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3. Description of the model

The object of the investigation is a modified Rayleigh-
Bénard (RB) configuration, a cylindrical melt column of
variable aspect ratio homogeneously heated from below.
The photo in Fig. 1 illustrates the experimental setup
mounted between the HMF producing coils. As working
fluid the ternary alloy GalnSn [7] was used because it
remains liquid at room temperature and as distinguished
from mercury it is non-poisonous. Moreover, its low
Prandtl number is similar to that of molten silicon.

Figure 1: Oblique view to the experimental setup mounted
inside the HMF coil system. The inner diameter of the
cylindrical melt volume is 178 mm whereas that of the cold
finger is 70 mm.

The heating was realized by an electrical heating plate
embedded in a massive copper disc to achieve isothermal
boundary condition. Several thermocouples were
installed inside the copper disc to monitor its
temperature. The upper thermal boundary condition in a
CZ system is accounted for by a partially cooled surface.
The partial cooling in our experiment covers
approximately the same fraction area as the crystal does
in an industrial facility. It is realized with a circular heat
exchanger (cold finger) mounted concentrically at the top
of the experimental cell. The cold finger is optionally
rotable, a precise control of the temperature is realized by
supplying it with coolant fluid at high flow rate from a
thermostat having a large reservoir. The latter is regulated
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by a PID circuit. The temperature of the cold finger is
also monitored at various positions. For the purpose to
achieve adiabatic boundary conditions at the side walls a
borosilicate glass pipe was chosen as experimental cell
owing to its poor heat conductivity. During the
measurements, the apparatus was embedded in mineral
wool to minimize the lateral heat loss.

In the industrial Czochralski facility thermal radiation
from the hot silicon melt surface to the ambience is a
considerable heat sink. A distinctive feature of the
present setup is the possibility to model the heat loss from
the melt surface. The surface is therefore covered by an
electrolyte layer which is cooled by a copper spiral
completely immersed into this layer (cf. Fig. 1). Such a
system can be described by the dimensionless Biot
number Bi. For a detailed meaning of this dimensionless
heat transfer coefficient [8] is referred to.

Flow velocities were measured by the UDV technique,
the principle of operation is described in the pioneering
work of [9]. Mainly two features render UDV
predestinated for the present work. Firstly, it works for
opaque media including liquid metals. Secondly, it allows
the quasi-simultaneous measurement of an entire profile
of the local velocity component in direction of the sound
propagation along the ultrasonic beam. The readings of
the ultrasound transducers were taken by a DOP2000
velocimeter (Signal-Processing, Lausanne, Switzerland).

A simplified numerical model has been used for
comparison purposes. It is implemented as the spectral
three-dimensional time-dependent direct numerical
solution developed for the linear instability analysis in the
RB cell [3]. The flexibility of this model is restricted by
boundary conditions that must be of a fixed type on each
of the principal surfaces (bottom, side, top). This
introduces a difficulty to model the top surface consisting
of two distinct regions. The central part below the cold
finger has no-slip conditions for the velocity field and,
effectively, a constant temperature. The outer part, in
turn, has stress-free conditions for the velocity and
boundary conditions of the third kind for the temperature.
Since the area of the cold finger is much smaller than the
area of the free surface the latter conditions are applied
for the entire top surface:

(%)Z=1 =0 and (T+ Bi—lg)z=1 =T,(r).

The ambient temperature profile is set to T,(r) =
—-1/8+3/2T,(r) —3/8T,(r) , where T;(r) are the
Chebyshev polynomials used to express the numerical
solution [3]. The value of Biot number is set to Bi=2. The
above boundary conditions constitute the basic deviation
from the physical model.

4. Results

For the present investigation mainly flow velocity
measurements were performed in the range Ra=[10*:10"]
and different magnetic fields B=[86, 160, 326] mT which
correspond to the Hartmann numbers Ha=[300, 600,
1200]. The cell filling height was kept constant at H=89
mm and results in an aspect ratio of a=0.5. To measure



the vertical velocity component two UDV sensors were
positioned 25 mm away from the rim of the cylinder.
Since the HMF breaks the rotational symmetry, one of
the sensors was in the plane parallel (¢=0°) to the HMF
direction, the second one in the plane perpendicular
(9=90°) to the HMF (see Fig. 1).

Fig. 2 shows exemplarily a selection of the
experimentally and numerically determined mean
velocity profiles at both distinguished positions for
Ha=300. Why the numerical data do not reproduce
quantitatively very well the experimental ones might
have several reasons, such as the modeling of the thermal
boundary condition by the Bi number. This is still under
development. On the other side, see Fig. 2b, for the
higher Ra the curvature of the velocity profile is quite
good reproduced with both local maxima.
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Figure 2: Experimental (solid lines) and numerical (dashed)
vertical velocity profiles for Ha=300 for selected Ra. Profiles
with positive sign (a), indicate a downward oriented flow and
the negative sign in (b) stands for upward flow direction.

For further comparison purposes the dimensionless
velocity expressed by the Reynolds number Re is useful
which gives the ratio of the inertial to the viscous forces.
Here Re is calculated from the maximum v, value of the
velocity profile by Re=v,m.x R/V. Fig. 3 summarizes Re
as function of Ra and of Ha, and shows, additionally, a
comparison with first numerical results. For Ha=300 the
experimental results are interesting because the average
velocity decreases as the heating power increases for
Ra>4.8x10° (¢=90°) and Ra>5.5x10° (¢=0°),
respectively. This is probably because of roll movement
and requires more attention in subsequent investigations.
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Figure 3: Comparison between the experimental and numerical
Re as function of Ra for two different Ha numbers.

A kind of velocity “boost” is observed in the numerical
results shown in Fig. 3. This cannot be validated by the
experiment because of the limited resolution of the UDV
technique. Velocities lower than approximately 1 mm/s
(which correspond in the present setup to Re < 260) are
hardly measurable and depend extremely from the UDV
signal quality. For ¢=0° a distinct hysteresis behavior is
observed for Ha=1200 depending from the ramp
direction by varying the Ra number. The symbols with
open circles indicate the case when Ra was increased, the
filled ones are for decreasing Ra. The difference is small
for the lower Ra range, but a difference of almost one
order of magnitude occurs for around Ra=10°.

Concerning the spatio-temporal behavior of the flow for
Ha=300, the measurements show signs of different
oscillation mode competitions. First of all Fig. 4 shows
the cases before instabilities develop. First instability
comes with an oscillation frequency of f=0.123 Hz at
Ra=2.1x10°, disappears and a low frequency oscillation
with f=0.071 Hz occurs at Ra=2.6x10°. Increasing
further the Ra number this oscillation mode stops too and
a high frequency mode starts from Ra=3.1x10° up to
Ra=5.1x10° with slightly increasing frequency between
f=0.221 Hz and f=0.281 Hz, respectively. In the latter
range, interestingly, the oscillations are only present for
9=90°. For Ra between [5.3x10°..5.8x10°] the
oscillations disappear again but restart with a very low
frequency and large amplitude at Ra=6.1x10° for up to
Ra=6.7x10°. The spatio-temporal process in Fig. 5
illustrates this behavior, whereas Fig. 6 shows the time
variation of the vertical velocity at some selected deeps
of the melt column. It can be seen that higher amplitude
oscillations occur for ¢=0° than for ¢=90°. For the



highest measured Ra=7.1x10° the oscillations broke
down and an irregular flow structure was observed.
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Figure 4: Time series and the mean profile of the vertical

velocity measured at the p=0° (a) and p=90° (b) positions. Yet,
no oscillations are observed for Ra=8x10°.

5. Summary

A CZ-like crystal growth model exposed to a HMF was
the object of the present investigation. Ultrasound
measurements of the vertical component of the fluid flow
were performed by varying the strength of the magnetic
field (Ha) and that of the buoyancy (Ra). Because the
HMF breaks the rotational symmetry the velocities were
recorded at two distinct azimuthal positions. The
experimental data serve as a benchmark object for
numerical codes which are still under development.
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Figure 5: Low frequency and large amplitude oscillations
(/=0.073 Hz) for Ra=6.1x10°.
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Figure 6: Time variation of the wertical velocity as shown in
Fig. 5 at selected deeps of the melt, (a) p=0° and (b) p=90°.



