
 

 

 

Ultrasound measurements in a physical model of Czochralski crystal 
growth in a horizontal magnetic field 
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A horizontal magnetic field (HMF) may improve conditions in the melt during large silicon single crystal growth 
by the Czochralski technique. This observation is counter-intuitive as the HMF evidently breaks the rotational 
symmetry. A previous study has shown that the HMF is not able to significantly delay the Rayleigh-Bénard 
instability in a rotating cylinder. It has been observed that an oscillating flow sets in soon after the linear onset. 
Can we expect a stabilizing effect of the HMF in the Czochralski growth? Why the symmetry breaking by the 
HMF is eventually not so relevant? These are two central questions for our primarily experimental study. Besides, 
it is also meant as a benchmark for comparison with the numerical codes. To serve the latter purpose the 
boundary conditions should be preferably well defined. Having this in mind the temperature boundary conditions 
are defined as follows. An isothermal heating is applied at the bottom of a cylindrical cell filled with GaInSn 
alloy. The side wall is thermally insulated. An optionally rotating isothermal cooler models the growing crystal. 
A water-cooled layer of an alkaline solution keeps the rest of the metal surface free from oxides and models the 
radiation heat loss. The maximum HMF strength is 0.3 T that corresponds to a Hartmann number of about 1200. 
Velocity profiles are measured by ultrasound Doppler velocimetry. 
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1. Introduction 
HMF has emerged as one of the most promising magnetic 
field configurations in the single crystal silicon growth by 
the Czochralski (CZ) technique. Various numerical 
simulations of the process [1, 2] have shown that HMF 
strongly stabilizes the melt under characteristic growth 
conditions. This observation contrasts with the linear 
instability results [3] in a cylindrical Rayleigh-Bénard 
(RB) cell predicting onset far below the typical CZ 
conditions. The linear instability is monotonic that means 
another steady solution sets in. Such instability by itself is 
practically harmless in the sense that it brings no 
instationarity. However, it is known from experiments in 
a rectangular RB cell [4] that the first linear onset is soon 
followed by secondary instability which leads to 
oscillating flow. One of the main tasks of our study is to 
address this apparent contradiction in a physical model of 
the CZ process with HMF. 
The RB cell is a rough model of CZ focused on the basic 
instability driving mechanism by unstable stratification of 
the melt. One of the key differences between RB and CZ 
configurations is the intrinsic radial temperature gradient 
in the latter. This gradient drives a flow in the CZ melt 
for an arbitrary small temperature gradient. This flow 
should be proportional to the driving buoyancy force 
(temperature gradient) when it is small enough. In the 
RB, in turn, the flow is zero unless the linear instability 
creates it at a sufficiently high temperature gradient. One 
may expect that instead of instability the CZ melt will 
develop a flow regime with a faster-than-linear 
dependency of velocity vs the temperature gradient. This 
“ghost” of the linear instability is another target of our 
study. 
Instationarity may be produced in the CZ process also by 
a completely stable three-dimensional flow. A stationary 

but non-uniform azimuthal distribution of velocity and 
temperature in the melt produces oscillating conditions 
on the surface of a rotating crystal. The HMF evidently 
breaks the rotational symmetry. It is, therefore, puzzling 
how it may produce satisfactory growth conditions. In the 
current study we consider only a stationary crystal that 
can hardly solve this puzzle. The measurements are more 
intended to quantify the maximum initial degree of the 
azimuthal non-uniformity of the flow in the bulk of melt. 
These results should serve as an input for the design of 
further model experiments with HMF and the crystal 
rotation. 

2. Basic principles in modelling the 
Czochralski technique 
The simplest model of the CZ facility might be a RB 
configuration, in particular a cylindrical cell heated from 
below and cooled at the top which is characterized by a 
height H and diameter 2R and adiabatic insulated side 
walls. Applying a temperature gradient ΔT = Tb − Tt 
between the bottom and top sides, buoyant convection 
occurs when ΔT exceeds some critical value.  
The dynamics of the mere thermally induced convection 
may be described by three control parameters. First of all 
the dimensionless Rayleigh number Ra is the crucial 
parameter in modelling buoyancy and describes its 
strength: Ra = βgΔTH3/νχ, where β is the thermal 
expansion coefficient , ν the kinematic viscosity, χ the 
thermal diffusivity of the fluid, and g the gravitational 
acceleration. The second control parameter, the Prandtl 
number Pr, takes into account the heat transport within 
the fluid and is given by the ratio of the thickness of 
viscous and thermal boundary layers: Pr = ν/χ. In 
general, molten metals and semiconductor melts are low 
Prandtl number fluids with Pr in the order of 10−2, which 
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