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The sound fields produced by ultrasonic oscillators are useful for applications in various industrial 
aspects, such as measurements, heat/mixture enhancements, cleanings and so on. Recently, 
according to the development of the UVP measurement, their importance has been increasing. In this 
research, the authors develop a simple and high-speed computational technique to simulate the sound 
fields produced by oscillators with arbitrary and complicated geometies, and investigate the optimum 
conditions for various oscillators, numerically. Moreover, the authors simulate the acoustic streaming in 
a cylindrical tank, using the simulated sound field. Such numerical results are compared with 
experiments. 
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1 INTRODUCTION 
Ultrasonic waves, strictly speaking, linear 
compressional waves with comparatively high 
frequencies, are useful for applications in various 
industrial aspects, such as measurements and 
cleaning, together with remote manipulations and 
non-contact transport technologies. Recently, 
according to the development of the ultrasonic 
velocity profiler (hereinafter referred to as UVP), 
their importance has been increasing. Moreover, 
ultrasonic waves can produce not only sinusoidal 
motions of fluid particles, but also the flow of fluid 
particles, even with small amplitudes. The flow is 
called as the acoustic streaming [1-3]. The acoustic 
streaming is useful as well, especially for the 
enhancements of heat transfers and material 
mixings. 
Such recent increasing needs for ultrasonic waves 
are promoted by manufacturing cheap and robust 
ultrasonic oscillators such as piezoelectric actuators. 
The piezoelectric actuators have high flexibility in 
their geometries, by which we can expect widely-
applicable potentials in other fields. So, we still 
further demand the understanding of their detailed 
and precise sound fields, and faster and more 
efficient simulation techniques. 
In this research, we develop a simple and high-
speed computational technique to simulate the 
sound field produced by ultrasonic oscillators with 
arbitrary and complicated geometries. Namely, we 
consider the sound field around an oscillator, as an 
ensemble of spherical waves from many point 
sources. Concretely speaking, we calculate the 
sound-pressure distributions for circular-plate, 
annular-plate and semi-spherical oscillators at 
several driving frequencies, in order to reveal the 
optimal frequencies and geometries. Moreover, we 

simulate the acoustic streaming in a cylindrical tank, 
using the simulated sound field. Such numerical 
results are compared with experiments, by which we 
can confirm the present numerical accuracy. 
Incidentally, the tested range of the non-dimensional 
dominant parameter k×a (for its definition, see later) 
is from 10-60, which is close to the value of the most 
common UVP probes in use. 

2 COMPUTATIONAL METHOD 
2.1 Velocity potential 
(a) A circular-plate oscillator and other plate-type 
oscillators 
Figure 1 shows a circular-plate oscillator, which is 
an oscillating-circular plate, on an infinite baffle, 
together with the definitions of geometrical 
parameters and the present coordinate system (r, ϕ , 
z). A point B denotes an arbitrary measuring point. 
Note that the B is on the r-z plane at ϕ  = 0.  

From a theoretical point of view, in order to obtain 
, we should integrate the potential d  

corresponding to a minute area dS  on the oscillator  
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Figure 1: A circular-plate oscillator (an oscillating-circular 
plate) on an infinite baffle. 
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convergence at a restricted space. Even in such 
cases, we can easily compute the sound field by the 
present method.  

surface, all over the oscillator- surface areas. 
However, this procedure is not so easy even for 
simple-geometry oscillators. 
Instead, we divide the oscillator into many minute 
sections. For example, we divide a circular-plate 
oscillator into 

Figure 2 shows one of the non-plate-type oscillator, 
specifically speaking, the cross section on the r-z 
plane of a semi-spherical oscillator.  and  
represent the centre and the projected radius of the 
oscillator. The origin O of the coordinate system is 
at the centre of the oscillator’s circumference. As a 
characteristic length scale, we consider the 
equivalent radius , which defined by the radius of 
the circle with the same area as the oscillator 
surface. Then,  is always less than . 

ML×  sections, where L  and M  
denote the division numbers in the azimuthal and 
radial directions, respectively. Next, at each section, 
we put a point source, which is weighted by the 
corresponding section area. Then, we approximately 
regard the whole oscillator as an ensemble of 

cz ssa

ML×  
point sources.  a

As shown in Figure 1, we consider the velocity 
potential in the complex form at the B. An 
arbitrary point source A with a weight of dS  yields a 
velocity potential  at the B, which are given by  

ssa a
Φ

As well as the circular-plate oscillator, we divide the 
oscillator into many minute sections of ML× . And, 
at each section, we put a point source weighted by 
the corresponding section area. The distance 
between a point source A  and an arbitrary 
measuring point  is given by  

dΦ

( Rktje
R
dSdΦ ′−= ω

π
ξ

'2
0 ) ,       (1) 

Bwhere  denotes the distance between the A and 
the B. 

R′
0ξ , ω , t  and   represent velocity amplitude 

of the oscillator, excitation angular frequency, wave 
number, time and the imaginary-number unit, 
respectively. 

j ( )ϕθθσ cossincos222 cdRRR −++=′ .  (3)  

Under the linear approximation, we should consider 
one non-dimensional governing parameter k×a on 
the produced sound field, together with some 
geometrical parameters. k denotes the acoustic 
wave number, which is equal to 

Using Φ , acoustic pressure  is given by  ap

t
Φp
∂
∂

= ρa  ,                          (2) 

where ρ  denotes the density of fluid. 

As well as the circular-plate oscillator, by the 
present method, we can easily calculate the sound 
fields produced by the oscillators with other 
geometries such as annuli and rectangles, if the 
oscillators are two-dimensional plates. For example, 
we merely divide an annular-plate oscillator to many 
minute sections in the azimuthal and radial 
directions, as well. 
(b) A semi-spherical oscillator 
We may consider three-dimensional non-plate-type 
oscillators, expecting the control of acoustic-wave 
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Figure 2: Sectional view of a semi-spherical oscillator. 

02 cfπ , where  
and  represent the excitation frequency and the 
sound speed, respectively. Then, k×a is 
proportionate to the ratio of the oscillator size to the 
acoustic wave length.  

f

0c

2.2 Acoustic streaming 
When we consider the acoustic streaming, the 
governing equations are the compressible-viscous-
unsteady Navies-Stokes equations. In the present 
study, we suppose only the two-dimensional r–z 
plane, assuming the axi-symmetrical flow in a 
cylindrical tank. Moreover, we assume that 0cU , 

0a cu 0a ρρ and  are constant values much less 
than unity, and that the third and the higher order 
terms are negligible. Then, we get the governing 
equations using the vorticity ζ  and the stream 
function ψ , as follows. [2] 
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,          (5) 

where ν  denotes the kinematic viscosity of fluid. A 
vector ( )zr FF  ,F  represents the force par unit mass 
driven by the acoustic waves.  is given by F
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( ) ( )aaaa uuuuF ⋅∇−∇⋅−= Figure 5 shows contours of non-dimensional 
acoustic pressure amplitude 

,                       (6)   
( )00a ζρcp′  at k×a = 4, 

where 
where a superscript ‘‘¯’’ represents the time-mean 
operation. We get the velocity vectors of fluid 
particle driven by acoustic waves as follows. 

aa pp ≡′ . Dotted and solid lines correspond 
to the computational and the analytical results, 
respectively. We can see a good agreement 
between them. At other k×a = 6 and 10, we also 
confirm good agreements. 

φ−∇=au ,           (7)  

where the velocity potential φ  is the real part of Φ. 
Time-mean flow velocity ( )zU  ,rUU 4.2 Sound field around a circular-plate oscillator  is given by  

Figure 6 shows the computed distributions of 
instantaneous acoustic pressure  (in figure (a)) 
and sound-pressure level 0

aa
0 ρ

ρ uuU += ap,                            (8) 
( )0e10log20 ppSPL ≡  (in 

figure (b)) for a circular-plate oscillator at k×a = 55.1, 
where  denotes the effective value of acoustic 
pressure . In Figure 6(a), we see acoustic waves 

where a subscript ‘‘0’’ represents the time-mean 
value [4]. 

ep
When we consider the acoustic streaming, we need 
another governing parameter in addition to k×a. 
Then, we define the acoustic Reynolds number  
as  

ap

aRe

ωδ
ξ

 
 

0

00
a

c
Re = ,                             (9) 

0δwhere  denotes acoustic diffusivity. We solve the 
equations (4) and (5) by a finite difference method 
with Crank-Nicolson semi-implicit discretisation in 
time and 2nd-order central discretisation in space, 
using the SOR algebra solver.  

3 EXPERIMENTAL METHOD  
In the present experimental apparatus, a cylindrical 
tank has such dimensions as 60mm in diameter and 
150mm in length. The Working fluid is glycerin 
aqueous solution, suspending many but small-
amount-of aluminum flakes of 2-3μm inside for flow 
visualisation. 

 

Figure 6: Distributions of  and , for a circular-plate 
oscillator at k×a = 55.1 (  = 10mm,  = 1600kHz).  

SPLap
a f

4 RESULTS AND DISCCUSSION  
4.1 Accuracy of computed sound field 
At first, we check the numerical accuracy of 
computed sound fields, by means of comparing 
them with the analytical ones obtained by Stenzel 
[5].  
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Figure 7: Distributions of sound-pressure level  and  
driving force vectors , for around a semi-spherical 
oscillator at k×a = 55.1 and 

SPLFigure 5: Contours of non-dimensional acoustic pressure 
amplitude ) F( 00a ρcp′ ξ , for a circular-plate oscillator at 
k×a = 4.  ·········, Computational ; aRe, analytical 
(Stenzel, 1958). 

 = 0.36 (  = 10mm,  = 
1600kHz).  

a f
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traveling from the oscillator, and see clear parallel 
stripes near the centre axis of the oscillator. the 
wave lengths shown by the stripes’ intervals are 
almost equal to the plane wave theory.  

azc azcdecreasing .At each , the maximum 
driving force and one of the largest s exist near 
the oscillator’s focus point. Figure 8 shows the 
sound-pressure level  at the focus peak point 
plotted against 

SPL

fppSPL
Because, higher contrasts of the stripe mean larger 
amplitudes of , we expect the strong directivity of 
the produced acoustic waves. In Figure 6(b), we can 
confirm the strong directionality. 

azc , at k×a = 27.6 and =0.36. 
Here,  is defined as the point where SPL  
attains the largest value near the oscillator’s focus 
point. As a result, smaller 

aRe
ap

fppSPL

azc is, stronger and 
nearer the acoustic convergence becomes. 

In addition, closer to the oscillator we see, more 
non-uniform  is. Even on the centre axis, the 
maximum and minimum SPL s appear one after the 
other, with going apart from the oscillator. 

SPL
4.4 Computations of acoustic streaming 
In order to confirm the numerical accuracy of the 
acoustic streaming, we investigate the mesh effect 
upon the maximum value of stream function 

4.3 Sound field around a semi-spherical 
oscillator ψ , at 

k×a = 13.8 and  = 0.36. For example, a 301×61 
mesh means a mesh system with 301 and 61 
meshes in the azimuthal and radial directions, 
respectively. As the relative error of the 201×41 
mesh to the 301×61 mesh is 6.4%, we use the 
301×61 mesh for the other main calculations.  

aReFigure 7 shows the distributions of SPL  for a semi-
spherical oscillator at k×a = 55.1, together with the 
produced driving force vectors at = 0.36. We 
show only the vectors with larger magnitudes than 
2% of the maximum. Figures (a), (b) and (c) are at 

aRe

azc azc = 0.6, 2.0 and 4.0, respectively, where  is 
a geometrical parameter of the oscillator. Note that 
the oscillator with 

Figure 9 shows an acoustic streaming at k×a = 27.6 
and  = 0.36, both by experiment (in figure (a)) 
and by computation (in figure (b)). We can confirm 
that these results are qualitatively similar with each 
other. 

aReazc  = ∞ is a circular-plate one. 
We can see that the directivity becomes weak with 
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 5 CONCLUSIONS 
We have developed a simple and high-speed 
computational technique to simulate the sound fields 
around complicated-geometry oscillators. The 
computations for a circular-plate oscillator shows a 
good agreement with analytical ones. Considering a 
semi-spherical oscillator, we have revealed the 
following. With decreasing  azc  the directivity 
becomes weak. On the other hand, smaller Figure 8: Sound-pressure level  at focus peak point 

against 
fppSPL azc  is, 

stronger and nearer the acoustic convergence 
becomes. Moreover we have simulated the acoustic 
streaming, and compared it with an experiment. 
Both are qualitatively similar with each other. 

azc , for a semi-spherical oscillator at k×a = 27.6 
and = 0.36 (a = 10mm, = 800kHz). aRe f

a) Experiment b) Computationa) Experiment b) Computation
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Figure 9: Comparison between experiment and 
computation, for a circular-plate at k×a = 27.6 and  = 
0.36 (a = 10mm,  = 800kHz). 
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